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We present a linear-scaling method for electronic structure computations in the context of Kohn-Sham
density functional theory �DFT�. The method is based on a subspace iteration, and takes advantage of the
nonorthogonal formulation of the Kohn-Sham functional, and the improved localization properties of nonor-
thogonal wave functions. A one-dimensional linear problem is presented as a benchmark for the analysis of
linear-scaling algorithms for Kohn-Sham DFT. Using this one-dimensional model, we study the convergence
properties of the localized subspace-iteration algorithm presented. We demonstrate the efficiency of the algo-
rithm for practical applications by performing fully three-dimensional computations of the electronic density of
alkane chains.
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I. INTRODUCTION

Kohn-Sham density functional theory �DFT� �Refs. 1–3�
is a very popular tool for electronic structure analysis, with
applications in materials science, chemistry, and other areas.
Compared to the quantum many-body problem, which de-
scribes a system with N electrons by a 3N-dimensional anti-
symmetric wave function �ignoring spin degeneracy�, the
Kohn-Sham density functional theory describes such a sys-
tem by N one-particle wave functions. By suitably approxi-
mating the functionals, Kohn-Sham DFT can become a very
effective alternative to the quantum many-body problem,
with satisfactory accuracy and much improved efficiency.4

The Kohn-Sham equations are a system of nonlinear ei-
genvalue problems. The traditional self-consistent approach1

for the solution of this eigenvalue problem consists of two
nested iterations: in the inner iteration, the orbitals �� j� j=1

N are
obtained by a process of diagonalization and orthogonaliza-
tion; in the outer iteration, the electron density is updated
until self-consistency is reached. The diagonalization and/or
orthogonalization procedure scales typically as O�N3�, which
is prohibitively expensive for relatively small problems.

In the past 20 years, a number of new methodologies
appeared in the literature, which attempt to exploit the local-
ity of the problem in order to reduce the computational
complexity.5 Locality, in quantum mechanics, refers to the
property that a small disturbance in a molecule only has a
local effect in the electron density, a phenomenon coined by
Kohn6 as nearsightedness. In the divide-and-conquer method
of Yang,7,8 the electron density is divided into a set of sub-
systems that are coupled through the chemical potential and
each subsystem is solved separately by diagonalization. In
the density-matrix minimization,9,10 the energy is rewritten in
terms of the density matrix, combined with the McWeeny11

purification transformation. The density matrix is then ob-

tained using nonlinear conjugate gradient minimization. Lin-
ear scaling is achieved by truncating the density matrix be-
yond a predetermined cutoff radius. Galli and Parrinello12

introduced a plane-wave-based algorithm using localized
nonorthogonal wave functions. In their approach, the local-
ization of the wave functions was imposed by adding an
additional potential to the Hamiltonian. An unconstrained
variational approach is described in Ref. 13. It is observed
that the direct truncation of the wave functions implemented
in Ref. 13 can introduce artificial minima in the energy.14,15

Various approaches have been raised to ameliorate the prob-
lem, such as increasing the number of localized orbitals, us-
ing the pseudoinverse of the overlap matrix,16,17 and intro-
ducing a localization procedure before the truncation.14

In this paper, we describe in detail the linear-scaling al-
gorithm introduced in Ref. 18. The algorithm is based on a
subspace-iteration procedure with localized nonorthogonal
wave functions. The general ideas of such a localized sub-
space iteration �LSI� were first introduced in Ref. 19. In the
context of electronic structure analysis, the subspace-
iteration approach has been used in Ref. 20. Our algorithm
replaces the diagonalization and orthogonalization step in the
subspace-iteration algorithm introduced in Ref. 20 by a lo-
calization procedure �described in detail in Sec. II B�. This
localization procedure differs from the one used in Ref. 12 in
that it does not introduce additional terms in the Hamil-
tonian. Linear scaling is achieved in our algorithm by ex-
ploiting the localization properties of nonorthogonal wave
functions.

Kohn-Sham DFT and the Kohn-Sham equations are fairly
complicated problems. As a variational problem, the Kohn-
Sham functional is nonlinear, nonlocal, and nonconvex. The
Kohn-Sham equations are a set of nonlinear and nonlocal
eigenvalue problems. For practical applications, there is the
added complexity coming from the exchange and correlation
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functional and the pseudopotential. These factors together
make Kohn-Sham DFT a rather formidable problem from a
mathematical and numerical viewpoints. However, some of
these complexities are inessential for the purpose of devel-
oping and understanding numerical algorithms. For these
reasons, we introduce here a one-dimensional linear model
and use it as a benchmark for clarifying the essential features
of the localized subspace-iteration algorithm, its performance
and its limitations. By linear we mean that the Hamiltonian
is linear, i.e., the potential does not depend on the wave
functions. This one-dimensional problem, as well as its non-
linear version, which will be discussed in subsequent publi-
cations, is very simple and it has many of the essential fea-
tures of the Kohn-Sham DFT. In subsequent papers, we will
present, using this model, a systematic analysis of other
linear-scaling algorithms and self-consistent iterations for
Kohn-Sham DFT.

One interesting feature of the LSI is that it does not con-
verge to a fixed point. Under favorable conditions �reason-
able gap size, large enough localization region, etc�, the nu-
merical errors will decrease to a rather small value and then
start to fluctuate. This is due to the conflicting effect of the
filtering and truncation steps in the LSI and should be a
general feature of linear-scaling algorithms involving trunca-
tion. Using the one-dimensional model, we are able to un-
derstand the convergence properties of the LSI in consider-
able detail.

This paper is organized as follows. In the remainder of
section, we will review Kohn-Sham DFT and some general
numerical issues. Hartree atomic units are adopted through-
out the text ��=e=me=1�. The linear-scaling algorithm and
its main components are described in considerable detail in
Sec. II. We introduce the aforementioned one-dimensional
model problem, and analyze how the different components
of the algorithm impact its performance and accuracy, in Sec.
III. The fully three-dimensional implementation of the algo-
rithm for Kohn-Sham DFT is described in Sec. IV, where the
results are validated and linear scaling is demonstrated for
practical examples.

A. Kohn-Sham density functional theory

Consider a system consisting of Na atoms and 2N elec-
trons. In Kohn-Sham DFT, the state of the system is de-
scribed by a set of N wave functions �� j� j=1

N , representing the
interacting electrons. We consider the wave functions to be
real throughout this article. In the Born-Oppenheimer ap-
proximation, the spinless Kohn-Sham energy functional can
be written as

EKS��� j�� = 2�
j=1

N �
R3

� j	−
1

2
�� j
dx + EXC���

+
1

2
�

R3
�

R3

�� − m��x��� − m��y�
�x − y�

dxdy

+ EPS���i�� , �1�

where the electron density is defined as

��x� = 2�
j=1

N

�� j�x��2,

and the wave functions ��i� j=1
N are required to be orthonormal

�
R3

�i�x�� j�x�dx = �ij, i, j = 1, . . . ,N . �2�

In Eq. �1�, the exact form of the exchange and correlation
functional EXC��� is unknown and needs to be approximated.
We adopt here the local-density approximation �LDA�, in
which this term is written as

EXC��� = �
R3

��x��XC���x��dx , �3�

where �XC is a function of the density alone. The generalized
gradient approximation �GGA�,21,22 in which �XC depends on
the gradient of � as well, can be used instead and this will
not change the discussions below in any significant way.

We consider � to be the density of valence electrons, and
their electrostatic interactions with the nuclei and the core
electrons are described by a so-called pseudopotential. The
pseudopotential is completely defined by an ionic function,

m, and an ionic pseudopotential operator, V̂PS. The ionic
function is

m�x� = �
j=1

Na

ma�x − R j� ,

where ma is a localized function �usually with exponential
decay� and �R j� j=1

Na are the locations of the atoms. In this
article, we use the norm conserving Troullier-Martins
pseudopotential23 in the Kleinman-Bylander form.24 We
therefore define the ionic pseudopotential operator as

V̂PS��x� = �
j=1

Na 	VLocal
j �x − R j���x�

+ �
l=0

lmax

�
m=−l

l �
R3

�lm
j �y − R j���y�dy�lm

j �x − R j�
 ,

�4�

where VLocal
j is the local potential for the jth atom �by which

we mean that it acts by pointwise multiplication� and ��lm
j �

projects � onto the subspace generated by the corresponding
pseudowave function of the jth atom. The indices �l ,m� in-
dicate the angular-momentum components of the pseudo-
wave function. By introducing the ionic function m, we can
make sure that VLocal

j and ��lm
j � are all finite supported. This

is important in order to achieve linear scaling.
In Eq. �1�, the pseudopotential energy EPS is defined as

EPS���i�� = 2�
i=1

N �
R3

�i�x�V̂PS�i�x�dx . �5�

When the Kohn-Sham functional �1� is minimized under the
orthogonality constraint �2�, the Euler-Lagrange equations
lead to the following nonlinear eigenvalue problem:
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H�i = �i�i; i = 1, . . . ,N . �6�

The Hamiltonian in Eq. �6� is defined as

H = −
1

2
� + Veff��� , �7�

where

Veff����x� = �
R3

�� − m��y�
�x − y�

dy + VPS�x� +
�EXC���

��
.

The starting point of our linear-scaling approach is the refor-
mulation of the Kohn-Sham problem in terms of nonorthogo-
nal wave functions, as introduced in Ref. 12. Given N lin-
early independent wave functions, �� j� j=1

N , define the overlap
or Gram matrix as

S jk = �
R3

� j�k, j,k = 1, . . . ,N . �8�

Then,

EKS��� j�� = 2�
j,k

�S−1� jk�
R3

� j	−
1

2
��k
dx + EXC���

+
1

2
�

R3
�

R3

�� − m��x��� − m��y�
�x − y�

dxdy

+ EPS���i�� , �9�

where the electron density is now defined by

��x� = 2�
jk

� j�x��S−1� jk�k�x� , �10�

and the pseudopotential energy is now

EPS���i�� = 2�
j,k

�S−1� jk�
R3

� j�x�V̂PS�k�x�dx . �11�

It is easy to show that the Kohn-Sham functional �9� is in-
variant under nonsingular linear transformations of the
N-dimensional subspace spanned by the wave functions

span��i� = span�	i� ⇒ EKS���i�� = EKS��	i�� . �12�

As a consequence, the Kohn-Sham functional can be thought
of as a functional acting on subspaces and the goal is to find
the occupied subspace. This is the subspace generated by the
eigenfunctions corresponding to the smallest eigenvalues of
the self-consistent Hamiltonian. The advantage of this view-
point is that the specific representation of the subspace is not
relevant and therefore we can choose the representation that
is most convenient for our purposes. Linear scaling can be
achieved by choosing a representation in terms of optimally
localized nonorthogonal wave functions, as described in Ref.
19. Nonorthogonal wave functions have better localization
properties than orthogonal orbitals,25,26 which constitutes an
additional advantage of this approach.

B. Numerical algorithms

A numerical algorithm for the Kohn-Sham problem
should have the following basic components:

�1� A discretization procedure that translates the continu-
ous problem into a discrete �finite-dimensional� problem.
Typical discretization procedures include the plane-wave
methods, methods based on a linear combination of atomic
orbitals, finite difference, and finite element methods.27

�2� An algorithm for handling the linearized finite-
dimensional problem. In particular, assuming that the elec-
tron density is given, we need to find the optimal eigensub-
space for the Kohn-Sham operator with a known potential.
This can be done by diagonalization or some other
procedure.18,27

�3� A nonlinear iteration to achieve self-consistency using
some mixing procedure for the density.27

In the present paper, we will focus on the second compo-
nent, i.e., finding the minimizing subspace of the Kohn-
Sham operator. For the numerical results presented below,
we use a simple second-order finite difference discretization
and simple linear mixing

�new = 
�old + �1 − 
���, �13�

where �� is the outcome of step 2 above. These are chosen
for their simplicity. There is no difficulty in using higher
order finite difference, finite element discretizations, or other
mixing schemes. However, since we will focus on localized
wave functions, our work does not apply to the case when
plane waves are used. As reported in Ref. 28, the number of
iterations required for self-consistency may depend on the
size of the system. Given that we are using the same types of
mixing as in Ref. 28, the same phenomenon is expected.

II. LOCALIZED SUBSPACE ITERATION FOR
KOHN-SHAM DENSITY FUNCTIONAL THEORY

A. Subspace iteration

Consider the problem of computing the largest eigenvalue
�in magnitude� of a symmetric matrix H. For simplicity of
presentation, let us assume that the eigenvalues of the matrix
H are 0��1��2� . . . ��N−1
�N. An effective approach is
the power method:29

�1� Given an initial vector v0.
�2� For k�0, define

�a� vk+1 =
Hvk

�Hvk�
,

�b� �k+1 = �vk+1�T · Hvk+1. �14�

�3� Repeat until ��k+1−�k�� tolerance.
One can show that the power method converges, i.e., �k

→�N, with convergence rate

� =
�N−1

�N

 1. �15�

If other eigenvalues are required, one can use the shifted
power method or the inverse shifted power method, which
are essentially the power method applied to H−�I and �H
−�I�−1, respectively.

The subspace iteration is a straightforward generalization
of the power method, applied to a subspace. A typical pro-
cedure is the following:
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�1� Given an initial space V0 of dimension M 
N, for
each k�1,

�a� Calculate Wk=HVk.
�b� Orthogonalize the basis �QR decomposition, for ex-

ample�: Wk=QkRk.
�c� Let Vk=Qk.
�2� Repeat until convergence.
The orthogonalization step is necessary in order to ensure

the linear independence of the vectors in the new space.
It can be proved that the previous algorithm converges

and that the rate of convergence is29

� =
�M

�M+1

 1. �16�

The cost of the orthogonalization step scales like O�N3�. A
key idea in the algorithm that we present here is to replace
this step by a localization procedure. Given a candidate sub-
space, we find an optimally localized basis for this subspace.
The details of this procedure are explained below.

B. Localization

Localization has been recognized by several authors as
one of the key ideas in achieving linear scaling.6,10,30 One of
the first implementations of locality in Kohn-Sham DFT con-
sisted on computing the so-called maximally localized Wan-
nier functions,30 in periodic systems, and for the orthogonal
formulation of Kohn-Sham DFT �1�.

This concept was generalized to the nonorthogonal case in
Ref. 19. Given a linear space V=span�� j� j=1

N of dimension N,
and a given smooth weight function w�0, the maximally

localized nonorthogonal wave function �̃ is defined as

�̃ = arg min
	�V,�	�=1

�
R3

w�x��	�x��2dx . �17�

Nonorthogonal wave functions have better localization prop-
erties than orthogonal Wannier functions. Consider the
weight function w�x�= �x−xc�2p, where p is a positive integer
�the maximally localized Wannier function essentially corre-
sponds to the choice p=1�. It is proved in Ref. 19 that for

metallic systems, the resulting �̃ from the minimization de-
cays asymptotically as �x−xc�−p−1. For systems with a small
spectral gap, the nonorthogonal wave functions also decay
faster in the algebraic regime �before exponential decay is
dominant� and the nonorthogonal wave function will have
the same exponential decay property as the orthogonal ones
for insulators.26

Given a set of wave functions, �� j� j=1
N , centered at the

locations �b j� j=1
N , respectively, we obtain a localized represen-

tation of V=span�� j� j=1
N by minimizing, for each j

� �1, . . . ,N�,

F�	� =

�
R3

�x − b j�2p�	�x��2dx

�
R3

�	�x��2dx

�18�

among functions 	 of the form

	�x� = �
k=1

r


k�k�x� � V . �19�

The minimization �18� leads to Wa=�Sa, where

Wkl = �
R3

�x − b j�2p�k�x��l�x�dx, k,l = 1, ¯ ,r ,

and � is the smallest generalized eigenvalue.
In the implementation of the algorithm, the wave func-

tions �� j� j=1
N are truncated beyond a certain cutoff radius,

which is determined at the beginning of the simulation.
Therefore, the wave functions used are always finite sup-
ported. As a result, only a fixed number of wave functions
appear in Eq. �19� and the localized basis can be obtained
with O�N� cost. The actual value of r depends on the geom-
etry of the system, i.e., the location of the atoms, but can
otherwise be bounded independently of N. It is important to
notice that the new localized wave functions span the same
space as the one we started with. Since the new localized
wave functions span the same subspace as the original ones,
their Kohn-Sham energy is the same.

There are several additional important technical compo-
nents of our localized subspace-iteration algorithm that need
to be explained:

�1� The filtering procedure, which is an improvement over
the power method,

�2� the computation of the Fermi energy, necessary to de-
fine an effective filter, and

�3� the computation of S−1.
We now explain these components in detail.

C. Filtering

The power method, and its variants, can be understood as
a simple filtering strategy by which a certain portion of the
spectrum of H is amplified more than others. In view of its
convergence rate �16�, it is clear that one can construct a
more efficient filter by applying a subspace iteration to P�H�,
where P is a polynomial of degree n. Assuming that the
polynomial P splits the spectrum of H, in the sense that

P��i� � P��M�, i = 1, . . . ,M , �20�

P�� j� � P��M+1�, j = M + 2, . . . ,M , �21�

the rate of convergence of the polynomial filtered subspace
iteration is29

� = 
 P��M�
P��M+1�


 . �22�

By a judicious choice of P, we can get ��� �see Eq. �16��,
thereby accelerating the convergence of the subspace itera-
tion considerably. It can be shown that the optimal choice for
P is the Chebyshev polynomial of degree n, Tn.

The Chebyshev polynomial of degree n is defined as
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Tn�x� = �cos�n cos−1x� if�x� � 1,

�− 1�ncosh�n cosh−1�x�� if�x� � 1.
� �23�

The Chebyshev polynomials have the property that �Tn�x��
�1 for x� �−1,1� and �Tn�x���1 for �x��1. In addition,
they satisfy the three-term recursion

T0�x� = 1;T1�x� = x;Tk+1 = 2xTk�x� − Tk−1�x�,k � 1,

�24�

which can be used to evaluate Tn�H� efficiently without ex-
plicitly computing the operator. The Chebyshev polynomial
T10 is plotted in Fig. 1, to illustrate the fast growth outside
�−1,1�.

To use the Chebyshev polynomial as an effective filter,
the spectrum of the Hamiltonian is divided into �min
�F


�max. The map x→2
x−�F

�max−�F
−1 transforms the interval

��F ,�max� into �−1,1�, and the interval ��min,�F� is mapped
into a subinterval of �−� ,−1�. Therefore the rescaled Cheby-
shev polynomial

Tn	2
x − �F

�max − �F
− 1


amplifies the lower end of the spectrum, while leaving the
high end unchanged in magnitude, effectively filtering out
the high end of the spectrum.

In the context of electronic structure analysis, subspace
iteration with Chebyshev filtering has been used by Zhou et
al.20 In our algorithm, linear scaling is achieved by replacing
the diagonalization and orthogonalization step in the
subspace-iteration algorithm introduced in Ref. 20 by the
localization procedure described in Sec. II B.

D. Computation of the Fermi energy

The Fermi energy �F is necessary in our algorithm in
order to define an effective Chebyshev filter, as described in
Sec. II C. Given that we have no knowledge of the spectrum,
this is not as straightforward as in codes that involve
diagonalization.20 We estimate the Fermi energy by the

maximum eigenvalue of the Ritz matrix. This eigenvalue can
be approximated with linear complexity in the following
way. Consider a basis of the subspace V, represented by �
= ��1 , . . . ,�N�. We know that �S−1/2 is an orthonormal basis,
where the Gram matrix S is defined in Eq. �8�. The Ritz
matrix R�RN�N is defined as

R = ��S−1/2�TH�S−1/2 = S−1/2�TH�S−1/2. �25�

We are interested in the eigenvalues of R, which are the
same as the eigenvalues of S1/2RS−1/2=�TH�S−1. The
Fermi energy is then approximated as the maximum eigen-
value of R, which can be approximated with a few steps of
the power method. Note that the power method will converge
to the maximum eigenvalue in magnitude. Therefore, to ap-
proximate the Fermi energy, we compute both the maximum
and minimum eigenvalues in magnitude of the Ritz matrix,
respectively, �M and �m. Once the maximum eigenvalue is
approximated, the shifted power method can be used to ob-
tain the minimum eigenvalue �in magnitude�. Note that in the
application of the power method, we do not need S−1 explic-
itly, but only S−1v for some vector v. This can be obtained by
solving the system of equations Sy=v. Assuming that the
condition number of S is bounded independently of N and
given that S is sparse, the system of equations can be solved
with the preconditioned conjugate gradient, using the main
tridiagonal part of S as a preconditioner.31 Since the basis �
is localized, the Ritz matrix is sparse and the required
matrix-vector multiplications can be performed with linear
scaling.

E. Computation of S−1

The inverse of the Gram matrix S, defined in Eq. �8�,
plays a fundamental role in the nonorthogonal formulation of
Kohn-Sham DFT, as it appears in the energy functional itself
�9�, the definition of the electron density �10�, and the
pseudopotential �11�. A direct computation of S−1 scales as
O�N3�. However, under the assumption that both S and S−1

decay exponentially fast away from the diagonal, S−1 can be
computed with O�N� complexity. We have implemented the
scaled third-order Newton-Schulz iteration described in Ref.
32 for the inverse matrix square root. Given the Gram matrix
S, the iteration solves equation

ZSZ = I . �26�

To compute Z=S−1/2 in the following way:
�1� Let �= 1

�S�1
, Z0=I, Y0=S, and k=0;

�2� Set Xk=�YkZk, Tk= 1
8 �15I−10Xk+3Xk

2�, Zk+1=ZkTk,
and Yk+1=TkYk.

�3� Repeat the previous step until �Zk+1−Zk�1� tolerance.
�4� S−1/2=�1/2Zk and S−1=�Zk

2.
All operations are carried out using sparse matrix compu-

tations. The truncation of the successive matrices is done
using the algorithm described in Ref. 33. The main idea in
this approach is to control the l1-norm error at each step by
discarding the blocks whose contribution to the next iterate is
below a given tolerance.

−8 −6 −4 −2 0
−1

0

1

2

3

4

5

6
x 10

11

x

T
10

(x
)

FIG. 1. �Color online� Chebyshev polynomial of degree 10, de-
picting its fast growth outside the interval �−1,1�.
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F. LSI Algorithm for Kohn-Sham DFT

The algorithm for Kohn-Sham DFT, based on a
Chebyshev-filtered subspace iteration with optimally local-
ized nonorthogonal wave functions is:18

Algorithm 1. Localized subspace iteration for Kohn-Sham
DFT.

�1� Given �localized� wave functions �0.
�2� repeat ��self-consistency loop (SCF)��
�3� Compute the electron density, �.
�4� Compute the effective potential, Veff���.
�5� repeat ��localized subspace iteration��
�6� Filtering step: �=Tn�H��.
�7� Localization Step: Localize �r for r=1, ¯ ,N.
�8� Truncate beyond the cutoff radius.
�9� Until convergence of the linear iteration.
�10� Update the electron density �mixing�.
�11� Until Convergence of the self-consistent iteration.

III. PERFORMANCE EVALUATION USING
A ONE-DIMENSIONAL MODEL

The original Kohn-Sham problem is a rather complicated
problem in three dimensions. In order to better understand
the essential features of the proposed algorithm, we will first
study its behavior on a much simplified one-dimensional
model. This one-dimensional model shares the most impor-
tant features of a linearized Kohn-Sham model. It can be
used as a test bed for systematically analyzing the accuracy
and convergence of DFT algorithms.

A. One-dimensional model

We consider an infinite array of atoms on a line with unit
spacing: Xi= i, for i�Z. Each atom has one valence electron
and we ignore spin degeneracy. The electrons are noninter-
acting, so that the electronic structure of the system is deter-
mined by solving linear eigenvalue problems �instead of
nonlinear eigenvalue problems as in the full Kohn-Sham
case�

H�i = �i�i, �27�

where the Hamiltonian is given by

H = −
1

2

d2

dx2 + V�x� . �28�

The effective potential V is a sum of Gaussian wells located
at the atom sites

V�x� = − �
i�Z

a
�2��2

exp�− �x − Xi�2/2�2� . �29�

This model has two parameters: a, which characterizes the
depth of the wells, and �, which characterizes its width.

The band structure of this model is shown in Fig. 2 for
several sets of parameter values. The first band is fully oc-
cupied and the second band is empty. The band gap Egap is
the difference between the highest eigenvalue in the first
band and the lowest eigenvalue in the second band �both
obtained at the edge of the first Brillouin zone k=� �Ref.

34��. We are also interested in the ratio between the band gap
and the width of the first band Ewidth. The relation between
the band gap and the parameters a and � of the potential is
shown in Fig. 3. It is observed that the gap is proportional to
�a /�. By changing parameters, we may change the model
from a well-gapped insulator to a metal-like system. We are
going to test the performance of LSI algorithms in different
situations.

B. Convergence issue of the LSI and related algorithms

Recall that each LSI iteration contains three steps: filter-
ing, localization, and truncation. Starting from a given sub-
space, the filtering step makes the subspace closer to the
occupied subspace by filtering out the higher spectrum. The
localization step finds a better representation while keeping
the subspace unchanged. It is clear that without truncation,
the LSI iteration will converge and will give the correct oc-
cupied subspace of the Hamiltonian, like other subspace-
iteration algorithms.

However, truncation makes things much more compli-
cated since the subspace deviates from the correct occupied
subspace after truncation. As a result, the iteration process
might not converge, as illustrated in Fig. 4. This is a common
feature for linear-scaling algorithms involving truncation.
For instance, for the orbital minimization algorithm,14 the
truncation step in general increases the energy while the
minimization step in general decreases the energy. Hence,
even if a variational algorithm is used, it is not guaranteed
that it will converge to the minimizer �not to mention other
issues, such as the issue of local minimizers in the orbital
minimization algorithm14�. The general behavior of the tra-
jectory of the energy in the LSI iteration is shown in Fig. 4.

In Figs. 4�a� and 4�b�, the difference between the energy
at each step and the accurate result obtained by direct diago-
nalization is shown in a semilog plot. In Fig. 4�b�, we also
plot the energy before the truncation step. It is obvious that
the truncation will increase the energy since the subspace
deviates from the occupied subspace after truncation. It can
be seen that the error first decays exponentially and then
starts to fluctuate around a value that is small but different
from the round-off error. In Figs. 4�c� and 4�d�, the fluctua-
tions are shown for two different cases. We will call this
behavior remanent fluctuation and we will refer to the error
between the numerical solution and the true minimizer �with-
out truncation� remanent error. The remanent error is caused
by the truncation of the wave functions.

We will quantify the size of the remanent fluctuation by
its variance between iterations N0 and N0+Ns, defined as

��E�2 =
1

Ns − 1 �
i=N0+1

N0+Ns

�Ei − Ē�2, �30�

where Ē is the mean value of �Ei�, i=N0+1 , ¯ ,N0+Ns. The

remanent error in the energy is then the difference between Ē
and the true energy of the system. Obviously, �E depends on
N0 and Ns. In the following, we choose Ns=1000 and N0
sufficiently large such that the iteration has already started to
fluctuate before step N0. We calculate the variance �E for
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different parameters �band gap, cutoff radius Rc, order of
Chebyshev filter NCheb� to try to understand the effects of
these parameters on the dynamical behavior of LSI iteration.
The results are collected in Table I. It is observed that the
variance decreases when either the cutoff radius, the band
gap, or the order of the Chebyshev filter is increased. The
effect of the cutoff radius is the most significant in the three
cases considered. Indeed, the variance decreases exponen-
tially as the cutoff radius is increased.

We may understand the behavior of the LSI and other
related algorithms that include a truncation step by consider-
ing a local error estimate. Let us denote by V0 the true occu-
pied subspace of the Hamiltonian and by Vn the subspace in
the nth step. The error is the difference d�Vn ,V0�, where d is
some choice of subspace distance �for example, the two
norms of the difference in the projection matrix�. We use F,
L, and T to represent abstractly the filtering, localization, and
truncation steps, respectively. Define the truncation error � as
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FIG. 2. �Color online� Band structure for different values of � and a. Choosing a and � appropriately we can control the size of the
energy-band gap. In figures �a� a=1000; �=0.15, �b� a=100; �=0.3, �c� a=10; �=0.3, we show insulator systems with different size gaps.
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� = d�TL�V0�,V0� . �31�

So � quantifies the error caused by truncating the localized
representation of the true occupied subspace. � is determined
by the localization property of the Hamiltonian, and hence, �
is decreased as the band gap is enlarged. Since d�TL�·� , ·� is
a continuous function of the subspace, we have

d�TL�V�,V� � C� �32�

if subspace V is sufficiently close to V0, say if d�V ,V0�

M.

For the filtering step, the error is reduced as in traditional
subspace-iteration methods

d�F�Vn�,V0� � �d�Vn,V0� = �en, �33�

where �
1 is the amplification factor determined by the
band gap and order of the Chebyshev polynomial used. Now
assume that we start from a subspace Vn that is inside a small
neighborhood of V0. Then, by Eq. �32�, we have

en+1 = d�TLF�Vn�,V0� � d�TLF�Vn�,F�Vn�� + d�F�Vn�,V0�

� �en + C� . �34�

Here, the estimate �34� is valid when the current subspace is
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FIG. 4. �Color online� Trajectory of the energy in the LSI iteration. �a� Logarithmic plot of the error in the energy for each step in the
LSI iteration �a=50,�=0.3,Rc=2.0�. �b� Logarithmic plot of the error in the energy in the LSI iteration �a=50,�=0.3,Rc=2.0�; for each
step, the errors before and after the truncation of the wave functions are both shown. �c� Remanent fluctuation in the energy �a=50,�
=0.3,Rc=2.0�. �d� Remanent fluctuation in the energy �a=10,�=0.4,Rc=2.0�.

TABLE I. The relationship between the size of remanent fluc-
tuation �quantified by its variance� and the parameters in the LSI
iteration.

a � Rc NCheb �E

10 0.2 1.0 20 1.2246�10−5

10 0.2 2.0 20 2.1078�10−7

10 0.2 3.0 20 5.0868�10−11

10 0.3 1.0 20 2.0360�10−5

10 0.3 2.0 20 4.6898�10−7

10 0.3 3.0 20 2.0813�10−11

10 0.4 1.0 20 3.3369�10−5

10 0.4 2.0 20 1.1842�10−6

10 0.4 3.0 20 2.6947�10−10

25 0.3 1.0 20 1.2325�10−5

25 0.3 1.0 12 1.2639�10−5

25 0.3 1.0 6 6.3202�10−5

25 0.3 1.0 4 3.3415�10−4
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close enough to the true occupied subspace. It is a local
result. Note that, without truncation, the true occupied sub-
space is an attractor for the subspace iteration. With trunca-
tion, it is in general not even a fixed point. The estimate �34�,
however, guarantees that the numerical results stay within a
neighborhood of the true occupied space if they come close
enough to it. The size of the neighborhood, which is clearly
related to the variance of the remanent fluctuation, can be
estimated from Eq. �34� and it is given by

e� � C�/�1 − �� . �35�

Note that � decreases exponentially as the cutoff radius in-
creases and � becomes smaller as the band gap or the order
of the filter increases. At least qualitatively, this estimate
agrees well with the numerical results. We will leave the
detailed discussion of the dynamical behavior of LSI and
other related algorithms to future publications.26

It is clear that, in practice, the LSI iteration should be
terminated when the remanent fluctuation is reached. When
the specified error tolerance is smaller than the remanent
error, the iteration is terminated before the remanent fluctua-
tion is reached. Later, when we talk about the accuracy and
convergence of LSI, it should be understood in this sense.

C. Performance of the LSI for the one-dimensional
model

We will focus on three sets of parameter values:
�1� a=1000 and �=0.15. The system is an insulator with

a fairly large band gap �Egap=323.974 and Egap /Ewidth
=3193.766�. The potential is quite narrowly peaked in this
case.

�2� a=10 and �=0.45. The system is close to being a
metal in this case, with only a tiny gap between the first and
second bands �Egap=0.731 622 and Egap /Ewidth=0.159 585�.
The external potential is almost flat in this case.

�3� a=10 and �=0.3. This is an intermediate situation.
There is a clear band gap but it is not so large �Egap
=3.438 81 and Egap /Ewidth=0.998 883�. The system can be
regarded as a semiconductor.

Since the system is periodic, for the exact solution we will
use k-point sampling with 64 k points in the first Brillouin
zone �−� ,��. We use a second-order finite difference dis-
cretization with grid size 1/64.

First let us study the accuracy of the LSI. We choose a
cutoff radius Rc=4.0 �recall that the lattice constant is 1�.
The results are shown in Table II. In the table, for each case,
the energy calculated from direct diagonalization and from
the LSI algorithm, the relative error in the energy, and the
error in the electronic density in the L1 norm are listed. For
the insulator �case 1� and the semiconductor �case 3�, the
results from the LSI algorithm are very accurate. For the
metal-like system �case 2�, since the gap is quite small, the
performance of linear-scaling algorithms is expected to dete-
riorate, but the LSI algorithm still gives results with fairly
good accuracy.

As noted above, the cutoff radius in the results presented
in Table II was fixed at 4.0. We now study the effect that the
cutoff radius has on the accuracy of the LSI. Naturally we
expect that the larger the cutoff radius used, the more accu-
rate the result will be. As an illustration, we take the param-
eter values a=100 and �=0.3 with a cutoff radius that varies
from 0.1 to 4.0 lattice constants. The accuracy of the energy
is shown in a logarithmic scale in Fig. 5�a�. It is observed
that as the cutoff radius increases, the error decreases expo-
nentially before reaching the scale of 10−8, which is the stop-
ping criterion used in the iteration for remanent fluctuation.
This agrees well with the expected exponential decaying
property of the Wannier function for insulators. It is also of
interest to see how the computed wave functions change as
the cutoff radius is changed. This can be seen in Fig. 5�b�,
where we show the wave functions resulting from the LSI
with cutoff radii Rc=0.2, 0.6, and 1.0. With a small cutoff
radius Rc=0.2, the result is quite far from the correct result.

TABLE II. Comparison between the results from the LSI and
direct diagonalization.

Energy Energy �LSI� Error Error in the density

Case 1 −2492.72 −2492.72 0.00% 3.5315�10−8

Case 2 −8.365 27 −8.35749 0.09% 1.1488�10−2

Case 3 −8.882 99 −8.88282 0.02% 3.9734�10−5
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For Rc=0.6 and 1.0, however, the wave functions are only
notably different from each other at the edge of the cutoff
radius. The wave function obtained using an even larger cut-
off radius is almost identical to the one obtained with Rc
=1.0 and is therefore not included in the figure.

More interesting is the case when the system is metal-like,
since this will help us understand how the LSI fails. There-
fore we will focus next on the metal-like case when a=10
and �=0.45. In Fig. 6�a�, the error in energy is shown in a
log-log plot as the cutoff radius is varied from 2.0 to 13.0. It
is observed that the error decays algebraically as the cutoff
radius increases.35 The resulting wave functions correspond-
ing to cutoff radii 3, 6, and 9 are shown in Fig. 6. The wave
function expands and becomes closer to the correct solution
as the cutoff radius grows. Note also that a larger cutoff
radius is required to obtain accurate results for metal-like
systems than for insulator systems �Rc=1.0 is enough for the
previous insulator case�.

IV. NUMERICAL EXAMPLES: VALIDATION
AND LINEAR SCALING

We have implemented the LSI algorithm for Kohn-Sham
DFT in three dimensions. To achieve linear scaling, it is
important to use a sparse representation for the wave func-
tions, as well as the pseudopotential. Both the wave func-
tions and the pseudopotential components are compactly
supported, and therefore once the grid size is fixed, each
array contains only a small fraction of grid values.

Consider the domain �= �0,L�� �0,D�� �0,H�, contain-
ing the support of all the wave functions. This domain con-
tains also the support of all the pseudopotential components
�local and nonlocal�, as well as the support of the atomic
function. We discretize � using a uniform mesh with grid
sizes �x=L /nx, �y=D /ny, and �z=H /nz. We define the val-
ues of the wave functions and the density at the center of the
cells �i,j,k���xi ,yj ,zk�, where

xi = 	i −
1

2

�x, i = 0, . . . ,nx + 1,

yj = 	 j −
1

2

�y, j = 0, . . . ,ny + 1,

zk = 	k −
1

2

�z, k = 0, . . . ,nz + 1. �36�

The points with indices 0 or nx+1, ny +1, and nz+1 are ghost
cells outside the computational domain and are used only to
impose the boundary conditions. Since the wave functions
are zero on the boundary, we define the ghost values by
reflection, which on the x=0 boundary would be �0jk=
−�1jk. A similar expression is used on the other boundaries.

The Laplacian is discretized using second-order centered
differences with the standard seven-point stencil. If we de-
fine

�xxuijk =
ui+1,j,k − 2ui,j,k + ui−1,j,k

��x�2 ,

�yyuijk =
ui,j+1,k − 2ui,j,k + ui,j−1,k

��y�2 ,

�zzuijk =
ui,j,k+1 − 2ui,j,k + ui,j,k−1

��z�2 ,

the Laplacian is

�uijk = �xxuijk + �yyuijk + �zzuijk. �37�

The Coulomb term is approximated as a discrete convolution
and this convolution is computed using the fast Fourier trans-
form �FFT� with zero padding as described in Refs. 18 and
36.

To validate our code, we have compared the result ob-
tained with our algorithm to the results obtained using the
package PARSEC.37,38 We considered two alkane chains
CH3�CH2�nCH3, with n=0 �ethane� and with n=10. The geo-
metric structure of the alkanes was determined using the ge-
ometry optimization option in the GAUSSIAN package39 using
the Gaussian-type orbitals STO-3G. The molecule so ob-
tained for n=10 is plotted in Fig. 7�a� to illustrate the geo-
metric structure. Although the molecule is a linear chain,
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there is a nontrivial three-dimensional structure due to the
hydrogen atoms. The cutoff radius for the wave functions
was chosen to be twice the length of the smallest bond
length.

We used the Troullier-Martins pseudopotentials in the
Kleinman-Bylander form.23,24 For hydrogen, the pseudopo-
tential has one local component for the 1s orbital and no
nonlocal components; for carbon, however, we need to con-
sider the 2s and 2p nonlocal components of the pseudopo-
tential. We choose the 2p pseudopotential to be the local
component in order to avoid using spherical harmonics. The
nonlocal pseudopotential is therefore the 2s component �so
lmax=0 in Eq. �4��. We generate the pseudopotentials using
the code developed by Paolo Gianozzi and his
collaborators.40 For the exchange and correlation term in the
energy, we consider the homogeneous electron-gas approxi-
mation of Ceperley and Alder,41 as parameterized by Perdew
and Zunger.42

The pseudopotential operator acts on the wave function �
in the following way:

V̂PS��x� = �
j=1

Na

�Vlocal�x − R j���x� + 
 j�00
j �x − R j�� , �38�

where we have defined


 j = �
R3

�00
j �y − R j���y�dy, j = 1, . . . ,Na. �39�

Both �00
j �·−R j� and � are compactly supported, so the

integrals only need to be carried out if the supports of
�00

j �·−R j� and � intersect. The integral is approximated using
the midpoint rule43


 j = �V�
klm

�00
j �yklm − R j��klm, �40�

where �V=�x�y�z is the volume of each computational
cell. The wave functions are centered at the center of the
chemical bonds and initially they are chosen to be Gaussians.
We also considered the case of random initial wave functions
and the code converged as well, although the number of
iterations was higher. The self-consistent iteration was termi-

nated when the difference between two consecutive electron
densities, measured in the L2 norm, was less than 10−5. In
principle, the filtering and localization steps must be per-
formed until the linear iteration has converged, as described
in Algorithm 1. In practice, however, we only perform these
steps once before updating the electron density and the ef-
fective potential.

For validation purposes, we have compared the energies
obtained with the LSI code and the corresponding energies
obtained with PARSEC. The result of the comparison is shown
in Table III. As can be seen, the difference is of the order of
2%–3%. This discrepancy is due to the differences in the
formulation and implementation of the two codes, such as
domain size, discretization, evaluation of the Coulomb po-
tential, etc., and is of no consequence for the purposes of this
article. The PARSEC code was used only as a reference to
validate our own. The electron density obtained for N=38
atoms is shown in Fig. 7.

To illustrate the linear-scaling behavior of our code, we
have collected the timings for the filtering, localization, in-
version of the Gram matrix, and computation of the Fermi

(b)(a)

FIG. 7. �Color online� Electron density of an alkane chain obtained with the LSI algorithm. �a� Atomic configuration, obtained using the
package GAUSSIAN �Ref. 39�. �b� Electron density.

TABLE III. Comparison between our code and PARSEC. The
ionic energy Eion includes the Coulomb and pseudopotential ener-
gies. All energies are measured in Hartrees. The results of the LSI
are in good agreement with the results from PARSEC.

Comparison with PARSEC

C2H6 ; N=8

Eion EXC EKS

ELSI −5.626 058 47 −22.157 325 46 −14.382 176 32

EPARSEC −5.538 702 40 −22.351 239 17 −14.893 958 80

Ediff 1.58% 0.87% 3.43%

CH3�CH2�10CH2; N=38

Eion EXC EKS

ELSI −30.206 844 90 −124.296 984 11 −81.752 116 08

EPARSEC −29.850 574 5 −125.827 971 34 −83.544 015 155

Ediff 1.19% 1.21% 2.14%
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energy for alkane chains with sizes ranging between 38 and
542 atoms. The results are shown in Fig. 8.

We have also computed the error in the approximation of
S−1 in the Frobenius norm. The results are shown in Table
IV. The tolerance was set to �=10−5. The error appears to be
independent of the size of the molecule. A reduction in the
error can be achieved by simply reducing the tolerance.

V. CONCLUSION

We have described a linear-scaling algorithm for Kohn-
Sham DFT, the LSI. The algorithm is based on the nonor-
thogonal formulation of the Kohn-Sham DFT and consists of
a Chebyshev-accelerated subspace iteration with optimally
localized wave functions. The use of the nonorthogonal for-
mulation is important, at least for two reasons: it allows us to
bypass the orthogonalization step and it allows us to use
optimally localized wave functions. We have also seen that
the added difficulty associated with the nontrivial Gram ma-
trix of the nonorthogonal wave functions can be overcome
rather easily.

We have presented and analyzed a controllable one-
dimensional model with which we can reproduce the main
characteristics of insulating and metallic systems. This model
has been used to illustrate the convergence properties of the
LSI and we plan to use it as a benchmark for the analysis of
other methodologies.

We have also implemented the LSI in a realistic three-
dimensional setting and tested its accuracy, as well as its
linear-scaling properties. All together, these demonstrate that
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FIG. 8. �Color online� Timings obtained with the LSI code. Linear scaling is observed. �a� Localization, �b� Chebyshev filter; n=10, �c�
Fermi energy, �d� inverse of the Gram matrix.

TABLE IV. Error in the computation of the inverse of the Gram
matrix as a function of molecular size. The errors appear to be
independent of the size of the system in this case.

N �S−1−S−1̃�F

145 2.850 907�10−5

181 2.885 210�10−5

217 2.849 086�10−5

253 2.851 860�10−5

289 2.850 546�10−5

325 3.030 061�10−5

361 3.122 993�10−5

397 3.152 983�10−5

433 3.054 400�10−5

469 3.226 956�10−5

505 3.301 841�10−5

541 3.279 986�10−5

577 3.348 167�10−5

649 3.298 259�10−5
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the LSI is a very promising tool for the electronic structure
analysis of insulators.
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